Clean Liquids from Coal: Helping to Meet Global Energy Challenges

Harold Schobert
Professor Emeritus of Fuel Science
Penn State University

Clarion University, November 2014

The 15 Terawatt Challenge

The current use of energy worldwide is roughly 15 TW (terawatts) annually. That's

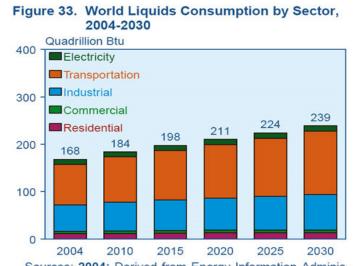
1,500,000,000,000 watts

or 15 billion light bulbs!

THE 15-TW CHALLENGE

- A third to half of the world's population lives in dire circumstances, lacking food, clean water, shelter, health care, education...
- To provide even a modest level of human needs to these people will require 10 more terawatts.
- The challenge: Where are we going to get them?

The 15 TW Answer (Part 1)


What energy resources will supply the "extra" 15 TW?

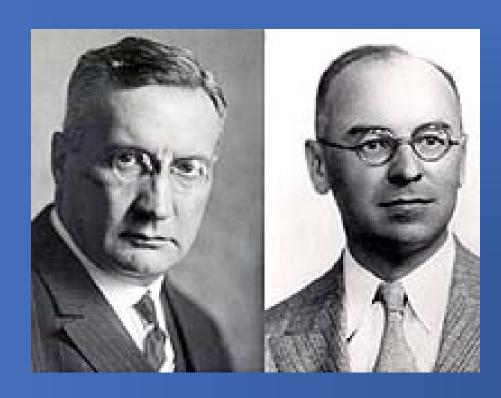
→ We're going to need everything.

Every energy source has...

- ✓ Some technological advantages, and some disadvantages.
- ✓ Some positive economic factors, and some economic disincentives.
- ✓ Some negative impacts on the environment, and some positive effects.

Transportation depends on liquid fuels

Sources: **2004**: Derived from Energy Information Administration (EIA), *International Energy Annual 2004* (May-July 2006), web site www.eia.doe.gov/iea. **Projections**: EIA, System for the Analysis of Global Energy Markets (2007).


- EIA predicts that transportation will continue to dominate use of liquid fuels.
- Liquids are likely easier to displace from other energy sectors.

Conventional coal-to-liquids technologies

Indirect liquefaction: Coal is converted to a mixture of CO and H₂ (synthesis gas). In a separate step, synthesis gas is converted to liquids (Fischer-Tropsch synthesis). This process destroys the molecular structure of the original coal

Direct liquefaction: Coal is reacted directly with hydrogen to produce a synthetic crude oil. This product is then refined further, into clean liquid fuels. Vestiges of the coal structure are preserved in the liquid.

Indirect liquefaction: Fischer-Tropsch synthesis

Indirect liquefaction: Step 1. Coal gasification

 Gasification is the reaction of coal (or any other hydrocarbon) with steam:

$$C + H_2O \rightarrow CO + H_2$$

 Because this reaction is endothermic, heat is obtained from the reaction

$$C + O_2 \rightarrow CO_2$$

• The CO/H₂ ratio in the gas depends on the H₂O/O₂ ratio in the feed, and on the coal composition.

Indirect liquefaction: Step 2. Water-gas shift

 The water-gas shift reaction is one of the most important equilibrium processes in industry:

$$CO + H_2O \leftrightarrows CO_2 + H_2$$

 Application of Le Chatelier's principle allows us to "shift" the raw gas from the gasifier to any desired CO/H₂ ratio.

Indirect liquefaction: Step 3. Synthesis

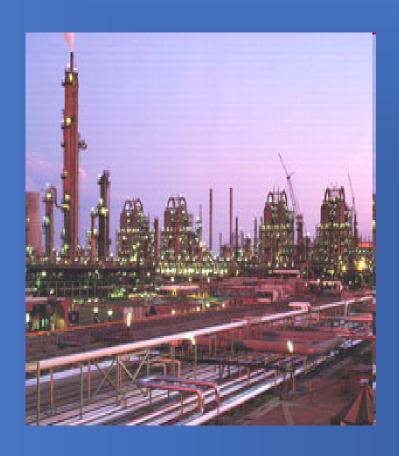
 $n CO + (2n+1) H_2 \rightarrow C_n H_{2n+2} + n H_2 O$

Depending on conditions (T, P, catalyst, and CO/H_2O ratio), one can form any products from CH_4 to C_{40+} waxes. The important ones are gasoline, jet fuel, and diesel fuel.

The importance of F-T liquids from coal to South Africa

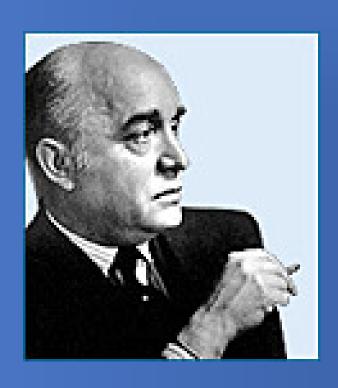
The potential of F-T chemistry

- Any hydrocarbon source can be converted (gasification) to synthesis gas
- ...of any desired CO/H₂ ratio (<u>water-gas shift</u>)....
- ...for conversion into any aliphatic hydrocarbon fuel or chemical feedstock from CH₄ to waxes (<u>FT</u> <u>synthesis</u>).


What's not to like?

The most successful coal-toliquids plant in history...

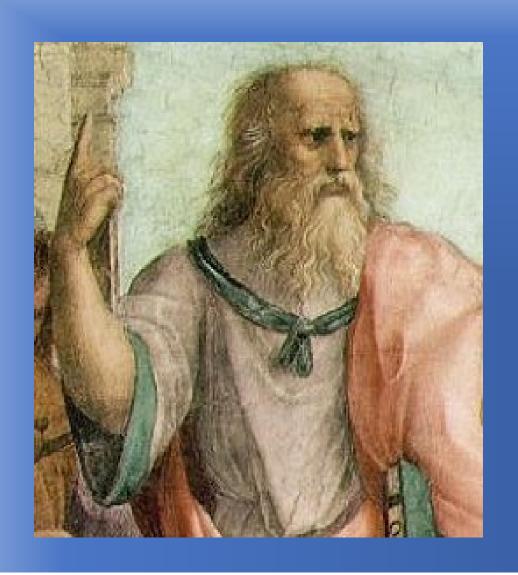
- is the largest point source of CO₂ on the planet,
- is a global "hot spot" for NO_x,
- and its H₂S emissions are 11 tons/hr.


A Carbon Dioxide Factory

For 3 tons of carbon going into the plant,

- 2 tons leave as CO₂
- 1 ton appears in liquid products

Direct liquefaction


- Also known as "coal hydrogenation" or the Bergius Process.
- In principle, should be simpler to do than indirect liquefaction.

The concept of direct liquefaction

 The addition of hydrogen to coal to produce a petroleum-like material:

"CH_{0.8}" + H
$$\bullet$$
 \rightarrow "CH_{1.8}"

- Hydrogen can come from H₂ or from H-rich molecules.
- Many process concepts have been developed, especially in 1970s-90s.

The safest general characterization of the European philosophical tradition is it consists of a series of footnotes to Plato.

-Alfred North Whitehead

The safest general characterization of direct coal liquefaction is it consists of a series of tweaks to Bergius.

A key question about direct liquefaction

But where do we get the hydrogen?

In a plant handling thousands of tons of coal per day, most likely by

- Coal gasification, followed by
- Water gas shift, followed by
- Being right back in the CO₂ business.

The MIG-25 "Foxbat"

In the mid-1980s a Soviet pilot defected with his MIG-25, flying it to the supposed limit of its operational range. Military analysts were surprised to find the fuel tanks nearly half full.

Fuel composition is the key

- Conventional aviation fuels are predominantly alkanes.
- The Soviet fuel was rich in cycloalkanes (naphthenes)—carbon atoms linked in rings.
- Cycloalkanes have higher volumetric energy density (MJ/L) than corresponding alkanes.

Naphthenic fuels from coal

- Naphthenes can be made by hydrogenating aromatic compounds, e.g. benzene → cyclohexane.
- Most coals consist of abundant aromatic ring structures linked by short aliphatic or heteroatomic chains.
- If these aromatic structures could be "cut" out of coal, and hydrogenated, it should be possible to make naphthenic fuels from coals.

The beginning

- Penn State was approached by the late Congressman Jack Murtha to see if there was anything PSU could do to make jet fuel from coal.
- We already had a white paper on the possibilities of making naphthenic, high volumetric energy density fuels from coal.
- We began in 1989 with a \$90,000 contract from the U.S. Department of Energy.
- At the time we started this program, none of us had ever even seen jet fuel.

The JP-900 Challenge

- Development of a fuel with good heat sink capabilities, especially for advanced applications.
- The challenge: develop a fuel that would resist decomposition at 900 °F (480 °C) for two hours.

Batch Reactor Stability of JP-900

Comparison of stressed jet fuels

JP8 JP8+100 JP900


Before After Before After Before After

900° F, two hours, under nitrogen. Solids formation is 0.0% from JP-900.

Parallel Pathways

- What if...we invested a lot of effort in converting coal, and it turned out that the product wasn't any good?
- We needed a way to simulate the likely final product simultaneously with figuring out how to make it.
- We chose a commercially available, coal-derived material, refined chemical oil, to use as a surrogate for our eventual coal product.

The T-63 Engine Test

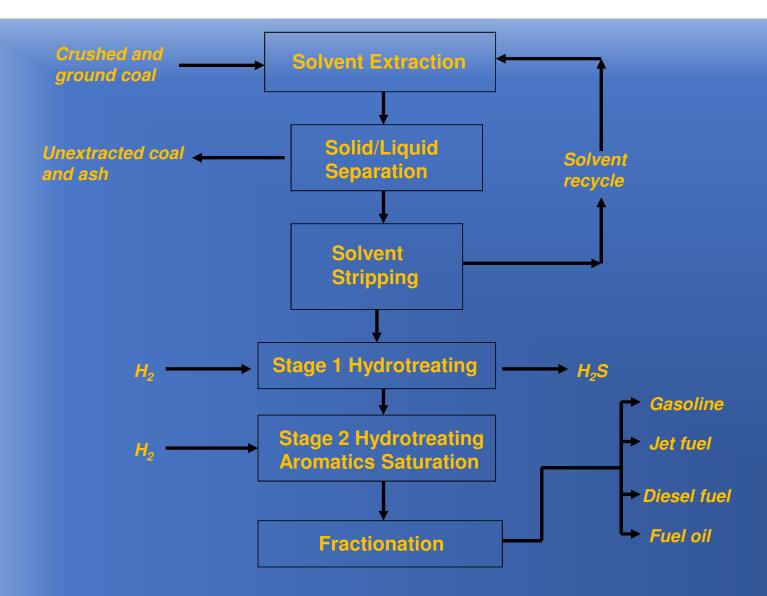
- Overall emissions similar to, or only slightly greater than, JP-8.
- Lower volumetric fuel flow rates, but slightly higher mass flow rates.
- "Comparable with JP-8 in most respects."

The Williams International Test

- 8400 L of "secondgeneration" JP-900 burned in >100 engine cycles.
- "Totally comparable with Jet-A."

And diesel fuel...

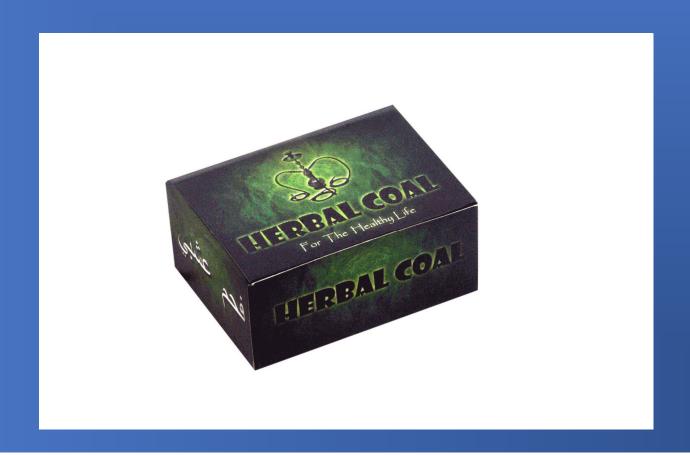
- Prototype JP-900 was successfully tested in a diesel engine truck for 345 miles (550 km), and another 345 miles in a 1:3 blend with petro-diesel.
- No observable differences in performance or fuel economy in either case, compared to operation on 100% petro-diesel.


Fuel production challenges

We needed a way to make liquid fuel from coal that would retain the "molecular fingerprint" of the parent coal, but...

Would not have the issues of

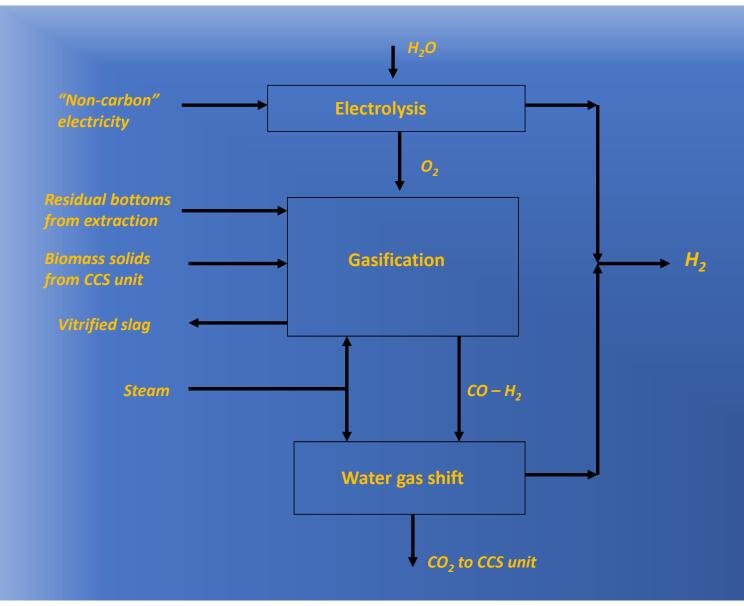
- emissions
- capital investment, and
- time to completion


associated with conventional coal to liquids processes.

Aspects of middle-distillate fuel quality

- 3 ppm sulfur
- <2% aromatics</p>
- 43 MJ/kg
- 22 mm smoke point
- −65° freeze point

Can we make coal "green"?



Potential emission problems

- Hydrogen production: coal gasification followed by water gas shift has substantial CO₂ footprint.
- Fired process heaters: CO₂ production even with natural gas.
- Residual solids (wet with solvent?) from extraction
- H₂S from the Stage 1 hydrotreating

Hydrogen production

- Main process under consideration: H₂O electrolysis using solar PV or wind-generated electricity.
- Secondary process: gasification of bottoms from extraction unit + biomass co-feed from CO₂ capture unit.

Process heat options

>Alternatives:

- Electric heat
- Concentrated solar power.
- Hydrogen-fired heaters (?)
- Gas-fired heaters with flue gas to CCS

➤Or, to think the unthinkable:

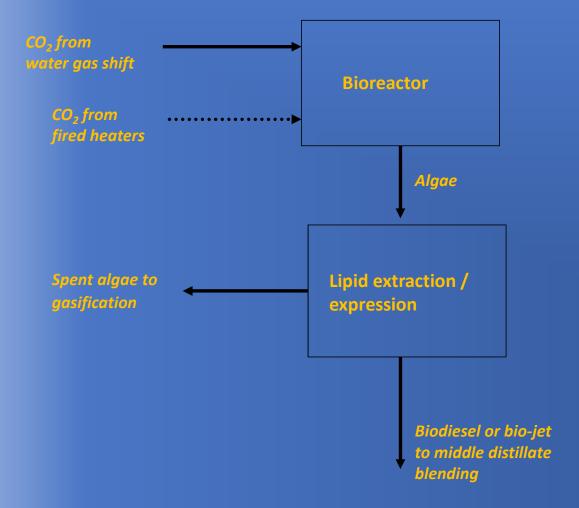
· Co-locate with nuclear power plant

H₂S treatment

Solar splitting of H₂S to its elements:

$$H_2S \rightarrow H_2 + S$$

Li and Wang, Angewandte Chemie


International Edition, 2014

Residual solids treatment

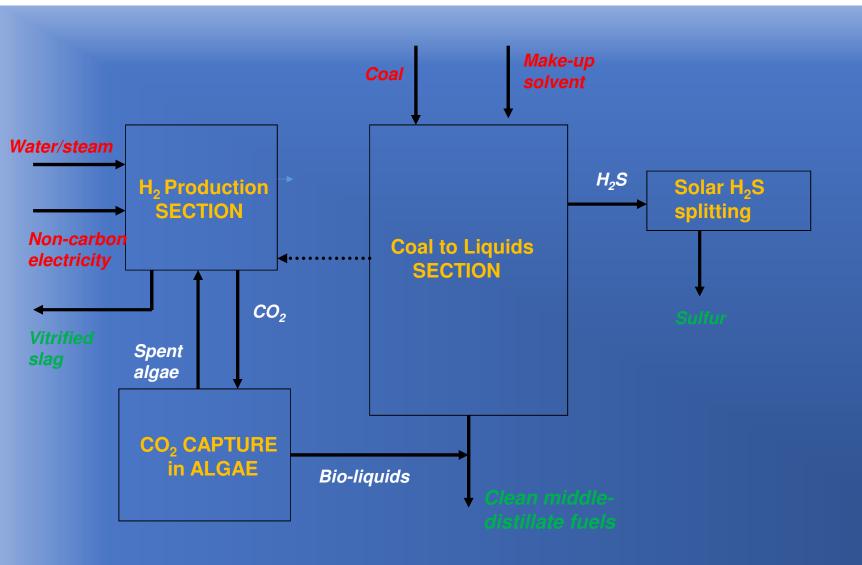
- Approach under current consideration: gasification to destroy unextracted coal and any carry-over solvent; conversion of mineral matter to vitrified slag.
- Alternative: sale to a co-generation or other plant permitted to burn wastes (but this only shifts the CO₂ emission elsewhere).

CO₂ capture

- Current focus is on algae bioreactors. Lipid extraction to add some bio- component to the middle distillate fuels. "Spent" algae co-fed to gasifier.
- Alternative: oil-reservoir brine injection.
- Long-term prospect: photocatalytic CO₂ reduction

Input / output

Inputs


- Coal
- Water/steam
- Make-up solvent
- "Non-carbon" electricity

Outputs

- Clean middle-distillate liquids, with bio component
- Sulfur
- Vitrified slag

Toward the zero-emission coal-to-liquids plant

- Make most of the hydrogen from water, using "non-carbon" sources of electricity—solar or wind.
- Convert H₂S to sulfur using known technology sell sulfur for additional revenue, recycle H₂.
- Capture CO₂ using algae; produce bio-oils from the algae to blend with the coal-derived liquids.
- Gasify the residual coal and dead algae; convert ash to a glass for, e.g. road fill.

Zero-emission coal to liquids: A Crazy Idea?

"Your theory is crazy, but it's not crazy enough to be true."

-Niels Bohr

A major technological breakthrough...

"It's when the crackpot hits the jackpot."

—Joel Mokyr

The 15 TW Answer (Part 2)

What energy resources will supply the "extra" 15 TW?

→ We're going to need everything.

And we're going to need everybody!

Lessons Learned

- ✓ Read widely.
- ✓ Record your ideas, no matter how wild or crazy they might seem at first.
- ✓ DO NOT !!!! be afraid of tackling the unknown.
- ✓ Have a "plan B" (C, D....)
- ✓ Leapfrog along parallel paths
- ✓ And, listen to the experts....(once in a while)

Acknowledgments

- Funding from the United States Air Force and the Department of Energy.
- The Penn State "Jet Fools," who did all the work.
- Susan Grimm and the late Carmen Scialabba.

hxs3@psu.edu